September 29, 2022

By

Food Restriction Diet Plan Weight Loss

The patients reported significantly fewer binge episodes and weight loss after six months of treatment.

A pilot study reveals that an implanted brain stimulator significantly decreased bingeing episodes and assisted patients in losing weight.

According to researchers at the Perelman School of Medicine at the University of Pennsylvania, a small device that detects food craving-related brain activity in an important brain region and reacts by electrically stimulating that region has shown promise in a pilot clinical trial in two patients with loss-of-control binge eating disorder (BED).

The trial, which was described in a paper published in the journal Nature Medicine, tracked the two patients for six months as the implanted device—of a kind often used to treat drug-resistant epilepsy—monitored activity in a part of the brain known as the nucleus accumbens.

The nucleus accumbens is involved in pleasure and reward processing and has been linked to addiction. When the device detected nucleus accumbens signals that had previously been shown to predict food cravings, it automatically stimulated that brain region, interrupting the craving-related signals. Over the course of six months, the patients reported far fewer binge episodes and lost weight.

“This was an early feasibility study in which we were primarily assessing safety, but certainly the robust clinical benefits these patients reported to us are really impressive and exciting,” said study senior author Casey Halpern, MD, an associate professor of Neurosurgery and chief of Stereotactic and Functional Neurosurgery at Penn Medicine and the Corporal Michael J. Crescenz Veterans Affairs Medical Center.

BED is thought to be the most common eating disorder in the US, affecting at least a few million individuals. It often involves binge-eating episodes without the purging of bulimia, and is typically linked to obesity. The bingeing person has a sensation of losing control over eating, therefore he or she continues to eat beyond the usual point of feeling satiated.

Cravings for particular meals precede BED episodes. In a 2018 study using mouse and human experiments, Halpern and colleagues discovered evidence that specific low-frequency electrical activity in the nucleus accumbens emerges shortly before these cravings—but not before normal, non-binge eating. The researchers stimulated the nucleus accumbens in mice to disrupt craving-related activity whenever it happened, and they discovered that the mice ate considerably less of a tasty, high-calorie meal that they would have otherwise gorged themselves on.

The device used by the researchers to capture signals from and stimulate the mice’s brains is commercially accessible and authorized for the treatment of drug-resistant epilepsy. It is surgically implanted under the scalp, with wires extending through the skull to each brain hemisphere’s nucleus accumbens.

The new study was a preliminary test of the same device and strategy in human subjects. Halpern’s team fitted each of two severely obese BED patients with the brain-stimulation devices, and, for six months, recorded signals from the devices. At times, the patients were in the laboratory, presented with buffets of their favorite foods—fast-food and candy were common items—but mostly they were at home going about their daily routines. The researchers could film the patients’ binge-eating episodes in the lab, and when the patients were at home, they self-reported the times of their episodes. The scientists observed that, as in their prior study, a distinctive low-frequency signal in the nucleus accumbens appeared in the seconds before the patients’ first bites of their binge meals.

In the next phase of the study, the brain-stimulation devices automatically delivered high-frequency electrical stimulation to the nucleus accumbens whenever the low-frequency craving-associated signals occurred. During this six-month interval, the patients reported sharp reductions in their feelings of loss-of-control, and in the frequencies of their bingeing episodes—each also lost more than 11 pounds. One of the subjects improved so much that she no longer met criteria for binge-eating disorder. There appeared to be no significant adverse side-effects.

“This was a beautiful demonstration of how translational science can work in the best of cases,” said study co-lead author Camarin Rolle, PhD, a postdoctoral researcher with Halpern’s group.

The scientists have continued to follow the subjects for another six months, and have begun enrolling new patients for a larger study. They note that, in principle, the same treatment approach could be applied to other loss-of-control-related disorders including bulimia.

Reference: “Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating” by Rajat S. Shivacharan, Camarin E. Rolle, Daniel A. N. Barbosa, Tricia N. Cunningham, Austin Feng, Noriah D. Johnson, Debra L. Safer, Cara Bohon, Corey Keller, Vivek P. Buch, Jonathon J. Parker, Dan E. Azagury, Peter A. Tass, Mahendra T. Bhati, Robert C. Malenka, James D. Lock and Casey H. Halpern, 29 August 2022, Nature Medicine.
DOI: 10.1038/s41591-022-01941-w

The study was funded by the National Institutes of Health.

The patients reported significantly fewer binge episodes and weight loss after six months of treatment.
A pilot study reveals that an implanted brain stimulator significantly decreased bingeing episodes and assisted patients in losing weight.
According to researchers at the Perelman School of Medicine at the University of Pennsylvania, a small device that detects food craving-related brain activity in an important brain region and reacts by electrically stimulating that region has shown promise in a pilot clinical trial in two patients with loss-of-control binge eating disorder (BED).
The trial, which was described in a paper published in the journal Nature Medicine, tracked the two patients for six months as the implanted device—of a kind often used to treat drug-resistant epilepsy—monitored activity in a part of the brain known as the nucleus accumbens.

The nucleus accumbens is involved in pleasure and reward processing and has been linked to addiction. When the device detected nucleus accumbens signals that had previously been shown to predict food cravings, it automatically stimulated that brain region, interrupting the craving-related signals. Over the course of six months, the patients reported far fewer binge episodes and lost weight.
“This was an early feasibility study in which we were primarily assessing safety, but certainly the robust clinical benefits these patients reported to us are really impressive and exciting,” said study senior author Casey Halpern, MD, an associate professor of Neurosurgery and chief of Stereotactic and Functional Neurosurgery at Penn Medicine and the Corporal Michael J. Crescenz Veterans Affairs Medical Center.
BED is thought to be the most common eating disorder in the US, affecting at least a few million individuals. It often involves binge-eating episodes without the purging of bulimia, and is typically linked to obesity. The bingeing person has a sensation of losing control over eating, therefore he or she continues to eat beyond the usual point of feeling satiated.
Cravings for particular meals precede BED episodes. In a 2018 study using mouse and human experiments, Halpern and colleagues discovered evidence that specific low-frequency electrical activity in the nucleus accumbens emerges shortly before these cravings—but not before normal, non-binge eating. The researchers stimulated the nucleus accumbens in mice to disrupt craving-related activity whenever it happened, and they discovered that the mice ate considerably less of a tasty, high-calorie meal that they would have otherwise gorged themselves on.
The device used by the researchers to capture signals from and stimulate the mice’s brains is commercially accessible and authorized for the treatment of drug-resistant epilepsy. It is surgically implanted under the scalp, with wires extending through the skull to each brain hemisphere’s nucleus accumbens.
The new study was a preliminary test of the same device and strategy in human subjects. Halpern’s team fitted each of two severely obese BED patients with the brain-stimulation devices, and, for six months, recorded signals from the devices. At times, the patients were in the laboratory, presented with buffets of their favorite foods—fast-food and candy were common items—but mostly they were at home going about their daily routines. The researchers could film the patients’ binge-eating episodes in the lab, and when the patients were at home, they self-reported the times of their episodes. The scientists observed that, as in their prior study, a distinctive low-frequency signal in the nucleus accumbens appeared in the seconds before the patients’ first bites of their binge meals.
In the next phase of the study, the brain-stimulation devices automatically delivered high-frequency electrical stimulation to the nucleus accumbens whenever the low-frequency craving-associated signals occurred. During this six-month interval, the patients reported sharp reductions in their feelings of loss-of-control, and in the frequencies of their bingeing episodes—each also lost more than 11 pounds. One of the subjects improved so much that she no longer met criteria for binge-eating disorder. There appeared to be no significant adverse side-effects.
“This was a beautiful demonstration of how translational science can work in the best of cases,” said study co-lead author Camarin Rolle, PhD, a postdoctoral researcher with Halpern’s group.
The scientists have continued to follow the subjects for another six months, and have begun enrolling new patients for a larger study. They note that, in principle, the same treatment approach could be applied to other loss-of-control-related disorders including bulimia.
Reference: “Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating” by Rajat S. Shivacharan, Camarin E. Rolle, Daniel A. N. Barbosa, Tricia N. Cunningham, Austin Feng, Noriah D. Johnson, Debra L. Safer, Cara Bohon, Corey Keller, Vivek P. Buch, Jonathon J. Parker, Dan E. Azagury, Peter A. Tass, Mahendra T. Bhati, Robert C. Malenka, James D. Lock and Casey H. Halpern, 29 August 2022, Nature Medicine.
DOI: 10.1038/s41591-022-01941-w
The study was funded by the National Institutes of Health.


Science

Brains of Binge-Drinkers Have to Work Harder to Feel Empathy for Others

Health

Johns Hopkins Analyzes the Effectiveness of Electrical Stimulation Therapies on Spinal Fusion

Science

Contrary to Theory, Binge-Eating Is Not Caused by Stress-Induced Impulsivity

Health

New Research Shows Every Week of COVID Lockdown Increases Harmful Binge Drinking

Health

“Skeleton Key” Can Unlock a Brain: New Realm of Personalized Medicine With Brain Stimulation

Biology

Precisely Timed Brain Stimulation Improves Learning and Memory Performance

Biology

Yale Researchers Shed Light on Binge-Eating

Health

Frequent Drinking Worse Than Than Binge Drinking for Heart Rhythm Disorder

In case this don’t work out for you, Dexedrine works good too. Adderall ain’t bad either. 🙂 How many of you are old enough to remember back in the 1950s when they routinely gave out dexedrine to bored housewifes to help them thru the day’s chores. Free the dexedrine. !
Why did you choose somebody who is so so very thin for the cover picture about a topic on how to lose weight? The fact that they have tape over their mouth while holding a burger intimate something more along the lines of anorexia which is not what your article is about.
At the very least you could have chosen somebody who is of an average weight which in the United States is much fluffier than the supposed “healthy” BMI.
It’s the media that sends the signals that no matter how skinny somebody is that they’re never skinny enough and that continues in subliminal ways such as having a skinny person in the picture about dieting with tape over their mouth while holding a burger.
Could you please stop with the subliminal warfare against female presenting people? The world doesn’t need any more programming that no matter how skinny you are you’re never skinny enough.
Email address is optional. If provided, your email will not be published or shared.








SciTechDaily: Home of the best science and technology news since 1998. Keep up with the latest scitech news via email or social media.

September 14, 2022

New Study Reveals 3 Activities That Can Lower Your Risk of Dementia

Chores, physical activity, and social visits were all linked to a reduced risk of dementia. A new study recently published in Neurology, the medical journal…

Read More

Chores, physical activity, and social visits were all linked to a reduced risk of dementia. A new study recently published in Neurology, the medical journal…
September 14, 2022

MICROSCOPE Spacecraft’s Most Precise Test of Key Component of the Theory of General Relativity

September 14, 2022

Stanford Scientists Discover Crucial Missing Component of Sea-Level Rise

September 14, 2022

Astronomers “Blown Away” by First Breathtaking Webb Space Telescope Images of Orion Nebula

September 13, 2022

One Sip of Alcohol Is Enough To Permanently Alter Your Brain

September 13, 2022

Scientists Develop a New, Powerful Cancer-Fighting Weapon

September 13, 2022

Apple Cider Vinegar for Weight Loss – What Science Says

September 13, 2022

Revealing the Hidden Genome: Unknown DNA Sequences Identified That May Be Critical to Human Health

Copyright © 1998 – 2022 SciTechDaily. All Rights Reserved.

source

Leave a Reply