September 26, 2022


Forget Password?
Learn more
share this!
1.2K
78
Share
Email
May 1, 2022
by
In a new paper published today in a special issue of Philosophical Transactions of The Royal Society, Kew scientists and partners report on how bees activate the “medicinal” properties of various nectars to protect themselves from parasite infections.

The team of researchers led by Kew scientist Dr. Hauke Koch, in partnership with Professor Mark Brown at Royal Holloway, University of London, collected and pollen samples from linden and strawberry trees at Kew Gardens in West London to determine how process the beneficial compounds found within. The researchers found that two compounds naturally found in the nectars of these species are activated by the bees’ digestive processes, the gut (microorganisms) or a combination of both.
The study’s primary aim was to discover how these elements and their anti-parasitic qualities can protect bees from the common gut parasite Crithidia bombi. The experiments yielded promising results for bee conservation efforts at a time when pollinators face the increasing threat of decline from climate change, disease, and habitat loss due to agriculture and land use.
Pollination by animals is one of the world’s most important species interactions, as plants offer a nutritious reward to insects, birds, and small mammals in exchange for the transfer of pollen. Not only does this process facilitate the reproduction of many plants, but it also serves to support global food production and ecosystems. Scientists are, therefore, alarmed to see mounting evidence of declines in pollinator abundance and diversity.
Among the threats faced by pollinators today are the dangers posed by parasites. Bee parasites can be introduced and spread through global trade routes, and can spill over from managed honeybee colonies to wild pollinators. Their effects on bees are worsened by other stress factors such as pesticide use affecting microbiome health. The bumblebee gut parasite C. bombi is of special interest to scientists, as the parasite is common and known to threaten the survival and development of bumble colonies.
Dr. Hauke Koch, Research Leader in Pollinator Biological Chemistry at RBG Kew and lead author of the paper, says, “Pollinators have diverse microbiomes in their guts and nest environments. These communities of microorganisms can be important for the health of pollinators, for example by defending them against diseases or producing important nutrients. By better understanding the functional importance and contributions of individual members of the microbiome to different pollinators, we may in the future be able to better support their health.
“For example, managed honeybee and bumblebee colonies can be supported through novel probiotics, or healthy microbiomes in wild pollinators can be maintained through a restriction in pesticides that negatively affect the microbiome and through the promotion of plants with nectar or pollen chemistry that stimulate healthy microbiomes.”
The first compound analyzed by the team, unedone, was found in the nectar of strawberry trees (Arbutus unedo) and was extracted from strawberry tree honey. The evergreen, shrubby tree is native to Ireland, Western Europe and the Mediterranean, and commonly planted in parks and gardens in the UK. Its nectar and pollen-rich flowers are known to be an important food for bumblebees in the autumn. Honeybees produce a bitter-tasting honey from it that is sought after around the Mediterranean.
The compound unedone was tested on C. bombi cultures grown in a lab as well as on buff-tailed bumblebee (Bombus terrestris) gynes (female bees capable of reproduction) collected at Kew in the autumn of 2018. The latter part of the experiment saw the researchers feed the bees a mix of sugar syrup and pollen over a two-week period, after which their feces were screened for parasites. Select bees were then given a treatment of sugar syrup or a treatment of unedone. The compound was found to inhibit C. bombi infections but only after interacting with the microbiome, as the initial metabolic processes in the mid-gut rendered it inactive against the parasite.
The researchers also determined that tiliaside, a compound extracted from the nectar of the linden tree, offers similar benefits to buff-tailed bumblebee workers. However, in contrast to unedone, tiliaside was found to be activated by the bees’ own digestive processes. Both compounds have been put forward as evidence of the benefits that food and microbiomes hold for protecting and strengthening pollinator health—at an individual and community level.
Professor Phil Stevenson, Head of Trait Diversity and Function at RBG Kew, and study co-author, says, “Understanding the drivers of pollinator health—both good and bad—is critical to realizing how we can best support pollination services and continue to benefit from their contributions to food production and sustaining natural ecosystems.
“We now know that some flowers provide better nutrition for some species while others provide bees with a natural medicine, so we can select plants for restoring degraded landscapes or crop field margins that provide multiple and tailored benefits to pollinators enhancing their health from individual through to community level.”
In addition to the dangers posed by parasites, pollinator decline is being driven by pesticide use, the intensification of agriculture, and climate change. Scientists are thus keen to better understand the natural processes that influence and affect pollinator health—both positively and negatively. These processes include the nutritional quality of pollen and nectar, the impact of parasites and the benefits of the microbiome, as well as the effects of natural bioactive compounds and landscape structure.
Stevenson adds, “The impacts of human activities on pollinator health and decline through excessive , climate change and agricultural intensification are now widely accepted after decades of evidence gathering.
“We now need to look for solutions and ways of sustaining diverse and healthy populations of and other insect groups. Many of these solutions can be developed through a better understanding of the natural processes that influence pollinator health. If we know how nutrition varies across the pollen of different species and which species provide the best food resources for the widest range of pollinating species, we can implement restoration programs such as field margin planting and ecological corridors with much better accuracy to the species of importance and with long-term benefits.”


Explore further

Saving heather will help to save our wild bees


More information: Hauke Koch et al, Host and gut microbiome modulate the antiparasitic activity of nectar metabolites in a bumblebee pollinator, Philosophical Transactions of The Royal Society (2022). DOI: 10.1098/rstb.2021.0162

Citation: Scientists discover how bees activate natural medicine against parasite infection during pollination (2022, May 1) retrieved 17 August 2022 from https://phys.org/news/2022-04-scientists-bees-natural-medicine-parasite.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further
Facebook
Twitter
Email
Feedback to editors
4 hours ago
0
5 hours ago
0
6 hours ago
0
7 hours ago
1
Aug 16, 2022
0
13 minutes ago
37 minutes ago
43 minutes ago
58 minutes ago
1 hour ago
1 hour ago
1 hour ago
1 hour ago
20 hours ago
Aug 15, 2022
Aug 14, 2022
Aug 12, 2022
Aug 12, 2022
More from Biology and Medical
Oct 11, 2019
Mar 09, 2022
May 26, 2021
Mar 08, 2022
Oct 13, 2021
Aug 04, 2021
2 hours ago
1 hour ago
2 hours ago
2 hours ago
16 hours ago
4 hours ago
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.

source

Leave a Reply